Enhanced Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg2Ni-type Alloy by Melt Spinning
نویسندگان
چکیده
Mg₂Ni-type Mg₂Ni1-xCox (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt spinning technique. The structures of the as-spun alloys were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys was tested by an automatic galvanostatic system. The results show that the as-spun (x = 0.1) alloy exhibits a typical nanocrystalline structure, while the as-spun (x = 0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni notably intensifies the glass forming ability of the Mg₂Ni-type alloy. The melt spinning treatment notably improves the hydriding and dehydriding kinetics as well as the high rate discharge ability (HRD) of the alloys. With an increase in the spinning rate from 0 (as-cast is defined as spinning rate of 0 m/s) to 30 m/s, the hydrogen absorption saturation ratio () of the (x = 0.4) alloy increases from 77.1 to 93.5%, the hydrogen desorption ratio () from 54.5 to 70.2%, the hydrogen diffusion coefficient (D) from 0.75 × 10-11 to 3.88 × 10-11 cm²/s and the limiting current density IL from 150.9 to 887.4 mA/g.
منابع مشابه
EFFECTS OF TiO2 ADDITIVE ON ELECTROCHEMICAL HYDROGEN STORAGE PROPERTIES OF NANOCRYSTALLINE /AMORPHOUS Mg2Ni INTERMETALLIC ALLOY
Abstract: Mg2Ni alloy and Mg2Ni–x wt% TiO2 (x = 3, 5 and 10 wt %) composites are prepared by mechanical alloying. The produced alloy and composites are characterized as the particles with nanocrystalline/amorphous structure. The effects of TiO2 on hydrogen storage properties are investigated using anodic polarization and electrochemical impedance spectroscopy. It is demonstrated that the initia...
متن کاملThe Preparation and Hydrogen Storage Performances of Nanocrystalline and Amorphous Mg2Ni-Type Alloys
© 2012 Zhang et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Preparation and Hydrogen Storage Performances of Nanocrystalline and Amorphous Mg2...
متن کاملPhase Transformation and Hydrogen Storage Properties of an La7.0Mg75.5Ni17.5 Hydrogen Storage Alloy
X-ray diffraction showed that an La7.0Mg75.5Ni17.5 alloy prepared via inductive melting was composed of an La2Mg17 phase, an LaMg2Ni phase, and an Mg2Ni phase. After the first hydrogen absorption/desorption process, the phases of the alloy turned into an La–H phase, an Mg phase, and an Mg2Ni phase. The enthalpy and entropy derived from the van’t Hoff equation for hydriding were −42.30 kJ·mol−1 ...
متن کاملNanocrystalline hydrogen storage alloys for rechargeable batteries
AB -type intermetallic compounds were prepared by the melt spinning method. Structure analysis was carried out by X-ray 5 diffractometry, SEM and high resolution electron microscopy. The hydrogen storage capacity was determined by isothermic mass controlled absorption of hydrogen and by electrochemical charge /discharge cycles. A variation of the preparation parameters showed that a nanocrystal...
متن کاملMössbauer Measurements for a Nanocrystalline Fe44Co44Zr7B4Cu1 Alloy
A two phase microstructure, consisting of nanocrystallites surrounded by an amorphous matrix, was produced by a melt spinning processing route. Alloys of this type have extrinsic properties that are dependent on the relative amounts of the amorphous and nanocrystalline phases. One method for examination of the properties of the nanocrystalline and amorphous phases is by Mössbauer spectroscopy. ...
متن کامل